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Figure 1: Frames taken from an interactive animation (6Hz) of a hair model consisting of 100K line segments. Left: image without
self-shadows. Others: images rendered with our algorithm.

Abstract
Self-shadowing is an important factor in the appearance of hair and fur. In this paper we present a new rendering
algorithm to accurately compute shadowed hair at interactive rates using graphics hardware. No constraint is
imposed on the hair style, and its geometry can be dynamic.
Similar to previously presented methods, a 1D visibility function is constructed for each line of sight of the light
source view. Our approach differs from other work by treating the hair geometry as a 3D density field, which
is sampled on the fly using simple rasterization. The rasterized fragments are clustered, effectively estimating
the density of hair along a ray. Based hereon, the visibility function is constructed. We show that realistic self-
shadowing of thousands of individual dynamic hair strands can be rendered at interactive rates using consumer
graphics hardware.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Color, shading, shadow-
ing, and texture

1. Introduction

Rendering hair, smoke and other semi-transparent objects is
challenging, because self-shadowing has to be handled cor-
rectly. Various algorithms exist, but are either geared towards
offline rendering [LV00, Sta94, KH84] or not quite interac-
tive yet [KN01]. We present a method that allows interactive
rendering of dynamic hair with dynamic lighting. While we
focus on the rendering of hair in this paper, rendering other
semi-transparent primitives can be handled with the same
technique. In Figure 1, an example rendering using our tech-
nique is demonstrated.

Similar to deep shadow maps [LV00], we do not store a
single depth at each pixel of a shadow map, but rather a frac-
tional visibility function (or simply visibility function) that
records the approximate amount of light that passes through
the pixel and penetrates to each depth. This visibility func-
tion takes into account the opacities (cf. coverage) of hair
strands. The partial attenuation of light passing through an
object can be accurately modelled with the help of this func-
tion.

The novelty of our algorithm lies in the way the visi-
bility function is constructed. In contrast to deep shadow
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maps [LV00], we do not compute the full visibility function
for each shadow map pixel and compress it later — we do
both at the same time. We rasterize all hair primitives into
the frame buffer. During rasterization we create and update
clusters of nearby primitives. These clusters are then used
to construct a piecewise linear approximation to the visibil-
ity function. An object can then be shadowed, by evaluating
the approximated and compressed visibility function. Our al-
gorithm can be implemented on current graphics hardware,
achieving interactive results (Figure 1). On future hardware,
we expect real-time frame rates.

2. Related Work

Many techniques have been proposed for rendering shadows.
Traditional shadow maps [Wil78] place a virtual camera at
the light source and render the depth of all visible surfaces
into a shadow map. A point is in shadow, if its distance to
the light source is bigger than the deph-value stored in the
shadow map. This algorithm cannot handle semi-transparent
objects, since only a single depth value is stored.

Anti-aliased shadow maps can be rendered using
percentage-closer filtering [RSC87]. In this case, multiple
samples in a filter region are queried and the fraction of
samples in shadow defines the shadow value. In theory, this
can be used to render shadows from e.g. hair, but requires a
large amount of samples and still often suffers from aliasing
[LV00].

Crow [Cro77] proposed shadow volumes, where a polyg-
onal representation of the volumes defining the shadowed
regions is created. At run-time every visible point is tested if
it lies inside any of these shadow volumes. It cannot be used
to render semi-transparent objects such as hair, since only a
binary decision can be made.

For the special case of static models but dynamic light-
ing, various algorithms have been proposed to render shad-
ows for semi-transparent objects or volumes in real-time
[SKS02, DHK∗03, NRH03]. Our algorithm allows for dy-
namic models, and does not need any expensive preprocess-
ing like these techniques.

Deep shadow maps [LV00] do not store a single depth
value per shadow map pixel, but instead store fractional vis-
ibility through all possible depths. First, this (per-pixel) 1D
visibility function is sampled at many locations. Then it is
efficiently compressed into a piecewise linear function. Ren-
dering shadows from this representation is simple: every vis-
ible point is intersected with the corresponding 1D visibility
function. The fractional visibility is simply queried from the
approximated visibility function, and then used to modulate
the color at the point.

Our method is based on the same idea: construct the frac-
tional visibility function and represent it compactly. The
main difference is how we sample and compress the func-

tion. We have also decided to use a piecewise linear approx-
imation. During sampling, we already decide on the posi-
tion of the vertices of the piecewise function, which is done
through k-means clustering and histogram binning of the
densities. I.e., we never need to store the full 1D function
before we compress it. Furthermore, our algorithm was de-
signed to be implemented on graphics hardware, resulting in
interactive performance.

Opacity shadow maps [KN01] are basically a simpler ver-
sion of deep shadow maps using graphics hardware. The
main difference to deep shadow maps is, that the fractional
visibility function is not compressed. It is sampled regularly
and stored in texture maps. Visibility queries are done using
texture mapping. Regular sampling of the visibility function
using graphics hardware is expensive, because it either re-
quires sorting the primitives (and rendering them back-to-
front), or slicing and re-rendering the full geometry for every
sample location and (used by Kim and Neumann [KN01]).
This approach requires tens of re-renderings to achieve plau-
sible results. In contrast, our method required significantly
less rendering passes. Recently, Koster et al. [KHS04] de-
scribed an accelerated implementation of the opacity shadow
map algorithm. In their work, real-time results are achieved,
at the cost of significantly reducing the accuracy of hair rep-
resentation and shadowing (empirical offsets are necessary
to avoid false shadowing artifacts).

As a side note, we mention that the idea of representing
hair as a density field has been proposed by Hadap et al.
[HMT01] for the purpose of modeling and animation, but is
not related to the approach discussed in this paper.

3. Density Clustering

Similar to the deep shadow mapping [LV00] and opacity
shadow mapping [KN01], we construct a 1D visibility func-
tion along the rays of the light view. In this section we will
elaborate on this.

3.1. Hair as a Density Field

We cast the problem of shadowing complex volumetric ge-
ometry into volume rendering terms. The idea is to estimate
a 3D density field over the geometry of interest. This den-
sity field is analogous to the extinction coefficient σt , which
represents the chance per unit length that light gets absorbed
or scattered along a ray [Ish78]. The density field is not con-
tructed explicitly, but rather sampled on the fly using simple
rasterization. Line primitives representing hair strands are
rasterized for each pixel. Due to the high depth complexity
of hair, ranging up to 200 in our experiments, several raster-
ized fragments will map to the same pixel. Each fragment
has an opacity value α associated with it, indicating the frac-
tion of light that is blocked, i.e. the chance that a light parti-
cle get absorbed or reflected (scattered). In the case of hair,
this is the fraction of the projected area of a hair strand that
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covers the pixel. Multiple α’s occupying the same pixel are
composited by multiplication. This opacity is related to the
extinction coefficient σt as follows. Take a small ray seg-
ment of length ∆s, containing N fragments. The extinction
coefficient for that segment is expressed as

ΠN
i=1(1−αi) = e−σt ∆s iff σt =

∑N
i=1 βi

∆s
, (1)

with βi = − ln(1−αi). The last equation implies the den-
sity field may be computed by means of density estimation
[Sil86] of β values along the ray. Once the density function
is known, we can obtain the visibility function by simply in-
tegrating σt :

V (s) = e−
R s

0 σt dt
. (2)

In volume rendering literature, this function is also known
as the transparency, and is called transmittance function in
the deep shadow map paper [LV00]. In the following sec-
tions we will define the integral function in the exponent as
T (s) =

R s
0 σtdt, called optical depth in volume rendering.

Fast and accurate estimation of the density field σt will be
the main challenge in our approach.

3.2. Construction of the Visibility Function

A straightforward way to estimate density is the histogram
method [Sil86], which accumulates point samples of a den-
sity function in discrete bins. This essentially generates a
piecewise constant approximation of the density, which re-
sults in piecewise linear optical depth after the integration of
Equation 2.

Histogram bin extents can be placed either uniformly or
non-uniformly along the depth. The first approach is related
to opacity shadow mapping technique [KN01]: the geometry
is uniformly sliced and alpha values are composited for each
slice. This corresponds to accumulating β-values in uniform
bins. Image quality is heavily dependent on the number of
slices. Usually a high number, e.g. 80, is required to achieve
reasonable results.

We wish to have a representation of the visibility which
has no restriction on placement of vertices of the piecewise
approximation on depth axis, i.e. the extents of the histogram
bins are chosen non-uniformly. Deep shadow maps [LV00]
are also based on a general piecewise linear approximation,
however the construction is too complicated to be imple-
mented in graphics hardware. The improvements over uni-
form histograms are discussed in section 5

To accomplish this, we cluster the fragments’ depth val-
ues, and place the bins around the clusters in a way that they
reflect the distribution of the intersecting geometry. A clus-
ter represents a bundle of coherent hair geometry and causes
an increase of T . This increase is proportional to the clus-
ter’s density. Assuming it is populated uniformly, T behaves

C1 C2 C3 C4

0

T

s

Figure 2: Clustering of hair geometry. The dashed line rep-
resents a ray intersection hair geometry at different depths.
This is obtained by rasterizing the hair. The depths are clus-
tered, yielding C1 to C4, and their contribution (log of opac-
ity) is accumulated in the corresponding cluster histogram
bins. The resulting T function is obtained by integrating the
histogram.

linearly (see Figure 2). The width of the bin is related to the
standard deviation σ of a cluster. It measures the spread of
the fragments in the cluster, indicating the length of the in-
crease.

More precisely, we compute our histogram as follows:

• cluster fragments while rasterizing, yielding the mean µ j .
• rasterize again to compute standard deviation σ j of each

cluster based on its mean µ j .
• construct K bins between µ j ±∆ j , with ∆ j = γ×σ j , and

γ a constant.
• Perform histogram binning in another rasterization pass.

This procedure is depicted in Figure 2. Please note, that the
geometry does not need to be sorted at all.

Again under the assumption of uniform density inside a
cluster, we estimate the value of γ as:

γ =
√

3

This is derived from the fact that a uniform distribution of
width W , has variance σ2 = 1

12W 2, and W = 2∆ j . Since
γ > 1, two adjacent bins might overlap, and care must be
taken that fragments are not accounted for twice (it can be
shown that for γ < 1 bins will never overlap). We handle this
exception as follows. Let R1 be the right hand extent of the
first overlapping bin, and L2 the left hand extent of the sec-
ond bin. We wish to avoid that R1 > L2, and therefore let
R1 = L2 = R1+L2

2 .

The remaining bins in between the cluster bins will also
receive contributions, but in a much less amount. To account
for these fragments we simply add their contribution to the
nearest cluster.

3.3. Clustering

We opted for the k-means clustering algorithm [Llo82] be-
cause of its simplicity. First, K initial cluster positions are
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chosen. In an iterative fashion, the position are updated by
the mean of the closest samples for each cluster, until the
positions stagnate. For every iteration, the scene has to be
re-rendered. We restrict the number of iterations to one. In
our experience this has not compromised image quality.

Since opacities can vary significantly among fragments,
we compute the mean and variance in a weighted fashion:

µ =
∑i βi ×depthi

∑i βi
σ2 =

∑i βi × (µ−depthi)
2

∑i βi
(3)

The efficiency of this clustering algorithm is dependent
on the choice of the initial cluster positions. We choose to
construct them uniformly between the nearest and furthest
fragment.

3.4. Filtering

Filtering of the geometry primitives is an important aspect
for the case of hair, since strands usually cover only a frac-
tion of a pixel. If not, severe aliasing artifacts will be visible
in the shadows. Instead of supersampling and post-filtering
[LV00], or point splatting [KN01], we rasterize pre-filtered
lines during the clustering. This is accomplished using tex-
ture mapping. Each of the line segments are rendered in
a fashion similar to so-called “billboards” which are com-
monly used to render particles.

A rectangle is constructed

Figure 3: Filtered hair
strands: we use “bill-
boarded” lines that
have a 1D pre-filtered
line texture applied.

in screen space such that it
is aligned along the 3D trans-
formed line segment while fac-
ing the image plane. A 1D tex-
ture contains a pre-filtered gaus-
sian profile of the line, and is
applied to the rectangle along
the length of the segment. A
depiction is given in figure 3.
The width of the kernel controls
the smoothness of the resulting
shadow. Mipmapping will assure

that the profile is filtered once again to match the sampling
resolution of the screen.

In case of perspective projection, a line’s pixel coverage
decreases with depth. To account for this, the contribution of
each rasterized fragment is weighted by its reciprocal depth
value.

4. Implementation

The presented algorithm was implemented on an ATI
Radeon 9800XT graphics board, equipped with pro-
grammable vertex and fragment shading units. We im-
plemented the clustering for K = 4, since it fits best in
the 4-vector format used throughout the graphics hardware
pipeline. This optimally utilizes texture space and vector
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Figure 4: Hair model used in Matlab experiment (see Figure
5). Left: the model consisting of several square hair bundles.
Right: a histogram of the gathered data. The geometry was
sampled by tracing a ray through the hairs, and intersects
with 3 bundles.

processing performance. The bulk of the computations of
the rendering is done in fragment shaders. Except for the
construction of line rectangles as described in section 3.4,
which is performed in a vertex shader.

We will not go into the low level details of our imple-
mentation, since it is quite involved on current hardware.
Next generation GPUs will ease this, and allow to achieve
higher performance and precision. In particular, floating
point blending [nVI] will have the biggest impact. Currently,
to compute the sums in equation 3, we have to emulate high-
precision blending on 8-bit integers using a technique that
quadruples the number of rendering passes [Jam03]. There-
fore, we expect our results described in section 5 to gain at
least a factor 4 speedup in the future.

5. Results and Discussion

In Figure 1 several frames of an animated sequence are
shown. The first frame shows the unshadowed version. It is
clear that shadows have a serious impact on the realism. Fig-
ure 5 shows various other results: long hair, curly hair and
even grass. For a highly detailed model of 200K line seg-
ments, we obtain an interactive frame rate of 3 Hz on an Intel
P4 at 1.3Ghz. Performance scales linearly with the number
of segments.

We validated the efficiency of the algorithm described in
section 3 experimentally in a Matlab implementation. Also,
a comparison is made with using a uniform histogram con-
taining 2K bins. The results are shown in Figure 5.

In the first experiment we ran the algorithm on data gath-
ered from an actual hair model, shown in Figure 4 and Figure
5. In the second experiment, we simulated fragment data by
generating 100 random depth values between 0 and 1 using
a mix of Q gaussian distributions with a random mean and
variance. Two situations are shown in Figure 5: Q = K, and
Q > K. It is clear that the clustering approach outperforms
the uniform histogram method. The latter is prone to e.g.
false shadowing, which happens when the increase starts too
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early. When the number of gaussians exceeds K, the method
seems to break down because more actual geometric clusters
get mapped to the available clusters in the representation.
We note that the quality in this case is heavily dependent on
the choice of initial cluster positions, which are chosen uni-
formly between 0 and 1. The bottom right image shows the
same situation, except that initial positions have been scaled
75% towards the left. This results in a more accurate ap-
proximation near the origin, where the visibility function is
more prone to visual artifacts due to the exponential fall-off
(equation 2). In general, gaussians get assigned to the closest
k-means cluster. This implies that those which are too close
together are likely candidates to get put into a single cluster,
especially when Q > K. Visual quality might get affected if it
occurs near the origin. The choice of optimal initial clusters
remains an open problem.

Comparing to Kim et al. [KN01], we achieve higher qual-
ity while display rates are one order of magnitude faster. Al-
though the steps in our algorithm are computationally more
intensive, opacity shadow mapping requires to re-render the
scene significantly more than the O(K) steps in our case. The
opacity shadow mapping approach is qualitatively compared
to ours in figure 5. One can opbserve that the opacity shadow
map is too bright in directly lit areas, and also lacks signif-
icant shadow detail there. We suspect this is mainly caused
by the empirical offsets, as discussed in [KHS04]. These are
indispensible to avoid false shadowing artifacts, even for a
high amount of slices (256 in this case).

6. Conclusion and Future Work

We have presented a novel approach to render self-shadows
for dynamic hair geometry. Each hair strand is taken into
account, thus allowing every possible hair style. The key in-
sight is that we treat hair geometry as a 3D density field,
which is not reconstructed explicitly, but sampled on the fly
using hardware rasterization. A clustering algorithm is used
to estimate the geometry density, and used to construct a vis-
ibility function w.r.t. the light source. We have demonstrated
the effectiveness of our algorithm both for rendering speed
and quality. Results will dramatically improve with the ad-
vent of next generation hardware.

Several issues remain for the problem of rendering hair.
First of all, aliasing still occurs when displaying the geome-
try in eye space. A similar method to the one describe here
may be devised to also tackle this problem, possibly creating
a general rendering frame work for hair, which may even be
suitable to display other complex semi-transparent geome-
try.

As mentioned in section 5, image quality depends on the
choice of initial clusters for the k-means algorithm [Llo82].
We wish to investigate how to improve this choice which is
done rather ad hoc in the current implementation. Moreover,
other clustering algorithms may as well apply to this prob-
lem.
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Figure 5: Quality of reconstructed visibility function. The blue line represents the reference solution. The red and green line
indicate the approximation using 4-means clustering and a uniform 8 bin histogram, respectively. The red stars and blue
triangles on the horizontal axis indicate cluster means and bin extents, respectively. Left: results on data gathered from the hair
model of figure 4. Middle and right: results for simulation with 4 and 8 gaussian distributions, respectively. The cyan line in
the right figure shows the output of the clustering algorithm when scaling the initial clusters 75% towards the origin (cluster
indications only correspond to solution in red).

Figure 6: Renderings of various models. Top row: red long hair consisting of 3600 strands (210K line segments), running at 3
Hz. The last image (with red border) show the result of running the opacity shadow map algorithm [KN01] using 256 slices,
for the same setting as in the 3rd image. Bottom row, from left to right: closeup of the long hair; curly hair model, consisting of
3900 strands (200K segments); rendering grass as hair.
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